Hands on with puppet: Making your cluster dance like it's on strings

Suchandra Thapa¹

¹Computation Institute University of Chicago

OSG Summer Workshop, August 9-11 2011

Outline

- Motivation
 - Why puppet?
 - Examples of places using puppet
- The nuts and bolts
 - Basic architecture and configuration
 - Putting it all together

Outline

- Motivation
 - Why puppet?
 - Examples of places using puppet
- The nuts and bolts
 - Basic architecture and configuration
 - Putting it all together

Why use puppet?

Or any other configuration management system?

- Makes configuration easier.
- Allows new systems (e.g. worker nodes) to be brought online quicker.
- With appropriate additions, you can track system configuration and revert or update on a managed basis.

Why use puppet? Or any other configuration management system?

- Makes configuration easier.
- Allows new systems (e.g. worker nodes) to be brought online quicker.
- With appropriate additions, you can track system configuration and revert or update on a managed basis.

Why use puppet? Or any other configuration management system?

- Makes configuration easier.
- Allows new systems (e.g. worker nodes) to be brought online quicker.
- With appropriate additions, you can track system configuration and revert or update on a managed basis.

- Unique setups (e.g. web apps running on a single system)
- Systems that change rapidly (e.g. test systems)
- Software or systems that you don't feel comfortable automating

Corollary

- Unique setups (e.g. web apps running on a single system)
- Systems that change rapidly (e.g. test systems)
- Software or systems that you don't feel comfortable automating

Corollary

- Unique setups (e.g. web apps running on a single system)
- Systems that change rapidly (e.g. test systems)
- Software or systems that you don't feel comfortable automating

Corollary

- Unique setups (e.g. web apps running on a single system)
- Systems that change rapidly (e.g. test systems)
- Software or systems that you don't feel comfortable automating

Corollary

Outline

- Motivation
 - Why puppet?
 - Examples of places using puppet
- 2 The nuts and bolts
 - Basic architecture and configuration
 - Putting it all together

Midwest Tier 2.

Example

Using puppet master running as a passenger app in apache puppetd running as a cron job (due to memory leaks in client) Puppet dashboard being added to provide monitoring of clients

BNL Tier 1

Example

Has a more complex setup:

Figure: BNL Puppet Flow

Outline

- Motivation
 - Why puppet?
 - Examples of places using puppet
- The nuts and bolts
 - Basic architecture and configuration
 - Putting it all together

Master/Client relationship

- Puppet master (with optional dashboard) serves puppet files
- Puppet clients query server and update configuration to keep things in sync

Master/Client relationship

- Puppet master (with optional dashboard) serves puppet files
- Puppet clients query server and update configuration to keep things in sync

Basics of puppet configuration

- Node definition
- Module definition
- Templates

Node definitions

Done in nodes.pp or file included in nodes.pp

```
Defining a new host
node 'itb-test1' {
    include itb base
    include gmond::itb::x86 64::virtual
    include user::itb::osgvo
    include user::itb::glexec
    include user::itb::condor
    include condor::submit::itb
    include yum::itb::condor::repo
```

Template definitions

Done in template.pp file

Defining templates

```
class itb_base::hadoop inherits itb_base {
   include user::itb::hadoop:
   include yum::itb::hadoop::repo
}
class itb_base::hadoop::datanode inherits itb_base::hadoop {
   include hadoop::datanode::itb
}
class itb_base::hadoop::namenode inherits itb_base::hadoop {
   include hadoop::namenode::itb
}
```

Module definition

- Directory name same as module name
- Directories for files, manifests, templates (called files, manifests, and templates)
- Minimum needed is init.pp file in manifests directory

Module definition

- Directory name same as module name
- Directories for files, manifests, templates (called files, manifests, and templates)
- Minimum needed is init.pp file in manifests directory

Module definition

- Directory name same as module name
- Directories for files, manifests, templates (called files, manifests, and templates)
- Minimum needed is init.pp file in manifests directory

Condor module base class

Base condor class, installs and sets up service

```
Base Condor class
class condor::base::itb {
    package {
         'condor - 7.6.2 - 1.x86 64' :
            ensure => present
    service {
        "condor".
            enable
                       => true.
             ensure
                       => true,
                       => [ Package["condor - 7.6.2 - 1.x86 64"],
             require
                             File["/etc/condor/condor config"],
                             File["/etc/condor/condor_config.local"]],
             subscribe => [ File["/etc/condor/condor config"],
                             File ["/etc/condor/condor config. local "] ]
```

Extending for worker node configuration

Sets up a condor worker node

```
Worker node class
class condor::worker::itb inherits condor::base::itb {
    # condor configuration setup
    file {
        "/etc/condor/condor config":
            source => "puppet:///modules/condor/condor config",
                   => 'root',
            group => 'root'.
            mode => 644
    file {
        "/etc/condor/condor config.local":
            source => "puppet:///modules/condor/condor config worker.local",
            owner => 'root'.
            group => 'root',
            mode
                   => 644
```

User management

Special case: In the manifest directory for the user module, users and groups defined in virtual.pp.

User and group definition

```
class user::virtual {
    @group { "glexec":
        gid => "19004",
        ensure => "present"
    }

    @user { "glexec":
        ensure => "present",
        uid => "19004",
        gid => "19004",
        gid => "19004",
        comment => "GLExec account",
        home => "/home/glexec",
        shell => "/sbin/nologin",
        require => Group['glexec']
    }
}
```

User management pt. 2

Users and groups actually get instantiated in a separate file, including the class in a node definition instantiates the user and/or group on that system

```
User/group instantiation

class user::itb::glexec inherits user::virtual {
    realize(
        Group["glexec"],
        User["glexec"]
)
}
```

Outline

- Motivation
 - Why puppet?
 - Examples of places using puppet
- The nuts and bolts
 - Basic architecture and configuration
 - Putting it all together

Setting up a raw VM

- Create modules/classes
- ② Create a template for the system type
- 3 Create node definition for machine
- Q Run puppet on systems

Summary

- If you're interested in configuration management puppet might be a solution
- Should start small and expand configuration as time goes on

- Future
 - Public repository for modules and recipes
 - Possible location for OSG collaboration?

For Further Reading I

Puppet documentation.

http:

//docs.puppetlabs.com/guides/introduction.html

Suchandra Thapa.

SVN Puppet repository.

http://vtb-svn.uchicago.edu/svn/puppet/

James Pryor, John Steven De Stefano Jr, Jason Alexander Smith.

Building and managing virtual machines at the Tier 1.

http://indico.cern.ch/getFile.py/access?contribId= 3&resId=0&materialId=slides&confId=141745

For Further Reading II

Sarah Williams.

Experiences at MWT2: Configuration Management with Puppet.

http://indico.cern.ch/getFile.py/access?contribId= 5&resId=2&materialId=slides&confId=141745